International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795

OBSERVATIONS ON THE INTEGRAL SOLUTIONS OF THE TERNARY QUADRATIC EQUATION $x^{2}+y^{2}=z^{2}+10$

J. SHANTHI ${ }^{1}$, M.A. GOPALAN ${ }^{2}$, P. DHANASSREE ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.
${ }^{3}$ PG Student, Department of Mathematics, SIGC,Affiliated to Bharathidasan University, Trichy,Tamil Nadu, India.

Abstract

: This paper illustrates the process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equation given by $x^{2}+y^{2}=z^{2}+10$

Keywords: Non-homogeneous quadratic, Ternary quadratic, Integer solutions.

Introduction:

It is known that Diophantine equations with multi-degree and multiple variables are rich invariety [1,2].While searching for the collection of second-degree equations with three unknowns, the authors came across the papers $[3,4,5,6,7]$ in which the authors obtained integer solutions to the ternary quadratic equation $x^{2}+y^{2}=z^{2}+N, N=1, \pm 4,8$.
The above papers motivated us for obtaining non-zero distinct integer solutions to the above equation for other values to N . This communication illustrates the process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equation given by $x^{2}+y^{2}=z^{2}+10$

Method of analysis:

The non-homogeneous ternary quadratic Diophantine equation under consideration is
$x^{2}+y^{2}=z^{2}+10$
The process of obtaining different sets of integer solutions to (1) is illustrated below:

Illustration 1:

The choice
$z=x+k, k \geq 0$
... (2) in (1) leads to the
parabola
$y^{2}=k^{2}+2 k x+10$

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
It is possible to choose k, x so that the R.H.S. of (3) is a perfect square and the value of y is obtained. Substituting the values of k, x in (2),the corresponding value of z satisfying (1) is obtained. For simplicity and brevity, a few examples are given in

Table 1: Example

k	x	y	z
1	$2 n^{2}+6 n-1$	$2 n+3$	$2 n^{2}+6 n$
3	$\frac{1}{6}\left(n^{4}-2 n^{3}+11 n^{2}-10 n+6\right)$	$n^{2}-n+5$	$\frac{1}{6}\left(n^{4}-2 n^{3}+11 n^{2}-10 n+24\right)$
5	$10 n^{2}+10 n-1$	$10 n+5$	$10 n^{2}+10 n+4$

Illustration 2:

The Substitution of the linear transformation
$x=y+k,(k \geq 0)$
in (1) leads to the pell equation
$2 y^{2}=z^{2}-\left(k^{2}+2 k y\right)+10$
which is solvable only for special values k, . For example, considering the value k to be 2 in (5), one obtains the positive pell equation
$Y^{2}=2 z^{2}+16, Y=2 y+2$
whose smallest positive integer solution is $z_{0}=8, Y_{0}=12$
To obtain the other solution of (6) considerthe pell equation
$Y^{2}=2 z^{2}+1$
whose smallest positive integer solution is $\left(\tilde{z}_{0}, \tilde{Y}_{0}\right)=(2,3)$
If $\left(\tilde{x}_{n}, \tilde{Y}_{n}\right)$ represents the general solution of (7), then it is given by
$\tilde{z}_{n}=\frac{1}{2 \sqrt{2}} g_{n}, \tilde{Y}_{n}=\frac{1}{2} f_{n}$
where
$f_{n}=(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}$
$g_{n}=(3+2 \sqrt{2})^{n+1}-(3-2 \sqrt{2})^{n+1}$
Applying the Brahmagupta lemma between $\left(z_{0}, Y_{0}\right)$ and $\left(\tilde{z}_{n}, \tilde{Y}_{n}\right)$, we have

$$
\begin{aligned}
& z_{n+1}=4 f_{n}+3 \sqrt{2} g_{n}, \\
& Y_{n+1}=6 f_{n}+4 \sqrt{2} g_{n}
\end{aligned}
$$

$y_{n+1}=3 f_{n}+2 \sqrt{2} g_{n}-1\left(\because y=\frac{Y-2}{2}\right)$
In view of (4)
$x_{n+1}=3 f_{n}+2 \sqrt{2} g_{n}+1$
The above values of $x_{n+1}, y_{n+1}, z_{n+1}$ represents the general solution to (1).
The recurrence relations satisfied by $z_{n+1}, x_{n+1}, y_{n+1}$ are given by
$z_{n+1}-6 z_{n+2}+z_{n+3}=0, n=-1,0,1,2, \ldots$
$x_{n+1}-6 x_{n+2}+x_{n+3}=-4, n=-1,0,1,2, \ldots$
$y_{n+1}-6 y_{n+2}+y_{n+3}=4, n=-1,0,1,2, \ldots$
Some numerical examples satisfying (1) for $k=2$ are given in Table 2 below:

Table 2: Numerical examples

n	z_{n+1}	y_{n+1}	z_{n+1}
-1	8	5	7
0	48	33	35
1	280	197	199
2	1632	1153	1155
3	9512	6725	6727
4	55440	39201	39203
5	323128	228485	228487

Observations:

1. All the values of z_{n+1} are even, where as the values of x_{n+1}, y_{n+1} are odd.
2. $z_{n+1} \equiv 0(\bmod 8)$
3. $x_{3 n-3}, x_{3 n-2} \equiv 0(\bmod 7)$
4. A few interesting relations among the solutions:

$$
\begin{array}{ll}
* & z_{n+2}-3 z_{n+1}-4 x_{n+1}+4=0 \\
* & z_{n+3}-17 z_{n+1}-24 x_{n+1}+24=0
\end{array}
$$

5. Expressions representing Nasty Numbers:

$$
\begin{aligned}
& \neq \frac{1}{4}\left(18 z_{2 n+3}-102 z_{2 n+2}+48\right) \\
& \star \frac{1}{8}\left(6 z_{2 n+4}-198 z_{2 n+2}+96\right)
\end{aligned}
$$

6. Expressions representing Cubical Integers:

$$
\begin{aligned}
& \neq \frac{1}{4}\left[3 z_{3 n+4}-17 z_{3 n+3}+9 z_{n+2}-51 z_{n+1}\right] \\
& * \frac{1}{8}\left[z_{3 n+5}-33 z_{3 n+3}+3 z_{n+3}-99 z_{n+1}\right]
\end{aligned}
$$

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
7. Expressions representing Bi-Quadratic Integers:

$$
\begin{aligned}
& \nleftarrow \frac{1}{4}\left[3 z_{4 n+5}-17 z_{4 n+4}+12 z_{2 n+3}-68 z_{2 n+2}+24\right] \\
& * \frac{1}{8}\left[z_{4 n+6}-33 z_{4 n+4}+4 z_{2 n+4}-132 z_{2 n+2}+48\right]
\end{aligned}
$$

8. Expressions representing Quintic Integers:

$$
\begin{aligned}
& * \frac{1}{4}\left[3 z_{5 n+6}-17 z_{5 n+5}+15 z_{3 n+4}-85 z_{3 n+3}+30 z_{n+2}-170 z_{n+1}\right] \\
& * \frac{1}{8}\left[z_{5 n+7}-33 z_{5 n+5}+5 z_{3 n+5}-165 z_{3 n+3}+10 z_{n+3}-330 z_{n+1}\right]
\end{aligned}
$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas:
Choice: 1
Let $Y_{n}=3 z_{n+2}-17 z_{n+1}, X_{n}=6 z_{n+1}-z_{n+2} \Rightarrow$
$Y_{n}{ }^{2}-8 X_{n}{ }^{2}=64$, a hyperbola.

Choice: 2

Let $Y_{n}=z_{n+3}-33 z_{n+1}, X_{n}=35 z_{n+1}-z_{n+3} \Rightarrow$
$9 Y_{n}^{2}-8 X_{n}{ }^{2}=2304$, a hyperbola.
10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Parabolas:
Choice: 1
Let $Y_{n}=3 z_{2 n+3}-17 z_{2 n+2}, X_{n}=6 z_{n+1}-z_{n+2} \Rightarrow$
$Y_{n}-2 X_{n}{ }^{2}=8$, a parabola.

Choice: 2

$$
\text { Let } Y_{n}=z_{2 n+4}-33 z_{2 n+2}, X_{n}=35 z_{n+1}-z_{n+3} \Rightarrow
$$

$9 Y_{n}-X_{n}{ }^{2}=144$, a parabola.

Illustration 3:

The Substitution of the linear transformation $z=k x,(k \succ 1)$
in (1) leads to the positive pell equation
$y^{2}=\left(k^{2}-1\right) x^{2}+10$
which is solvable only for special values k. For example,considering the value k to be 4 in (12), one obtains the positive pell equation

$$
\begin{equation*}
y^{2}=15 x^{2}+10 \tag{13}
\end{equation*}
$$

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
whose smallest positive integer solution is $x_{0}=1, y_{0}=5$
To obtain the other solutions to (13) consider the pell equation $y^{2}=15 x^{2}+1$
whose smallest positive integer solution is $\left(\tilde{x}_{0}, \tilde{y}_{0}\right)=(1,4)$
If $\left(\tilde{x}_{n}, \tilde{y}_{n}\right)$ represents the general solution of (14), then it is given by
$\tilde{x}_{n}=\frac{1}{2 \sqrt{15}} g_{n}, \tilde{y}_{n}=\frac{1}{2} f_{n}$
where
$f_{n}=(4+\sqrt{15})^{n+1}+(4-\sqrt{15})^{n+1}$
$g_{n}=(4+\sqrt{15})^{n+1}-(4-\sqrt{15})^{n+1}$
Applying the Brahmagupta lemma between $\left(x_{0}, y_{0}\right)$ and $\left(\tilde{x}_{n}, \tilde{y}_{n}\right)$, we have
$x_{n+1}=\frac{1}{2} f_{n}+\frac{\sqrt{15}}{6} g_{n}$,
$y_{n+1}=\frac{5}{2} f_{n}+\frac{\sqrt{15}}{2} g_{n}$
In view of (11),
$z_{n+1}=\frac{2}{3}\left(3 f_{n}+\sqrt{15} g_{n}\right)$
The above values of $x_{n+1}, y_{n+1}, z_{n+1}$ represents the general solution to (1).
The recurrence relations satisfied by $x_{n+1}, y_{n+1}, z_{n+1}$ are given by
$x_{n+1}-8 x_{n+2}+x_{n+3}=0, n=-1,0,1,2, \ldots$
$y_{n+1}-8 y_{n+2}+y_{n+3}=0, n=-1,0,1,2, \ldots$
$z_{n+1}-8 z_{n+2}+z_{n+3}=0, n=-1,0,1,2, \ldots$
Some numerical examples satisfying(1) for $k=4$ are given in the Table 3below:
Table 3: Numerical examples

n	x_{n+1}	y_{n+1}	z_{n+1}
-1	1	5	4
0	9	35	36
1	71	275	284
2	559	2165	2236
3	4401	17045	17604
4	34649	134195	138596
5	272791	1056515	1091164

Observations:

1. All the values of x_{n+1}, y_{n+1} are odd, where as the values of z_{n+1} are even.
2. $y_{n+1} \equiv 0(\bmod 5)$
3. $x_{n+1}+x_{n+2} \equiv 0(\bmod 10)$
4. A few interesting relationsamong the solutions:

$$
\begin{array}{ll}
* & y_{n+1}-x_{n+2}+4 x_{n+1}=0 \\
\& & 8 y_{n+1}-x_{n+3}+31 x_{n+1}=0
\end{array}
$$

5. Expressions representing Nasty Numbers:

$$
\begin{aligned}
& *\left(6 x_{2 n+3}-42 x_{2 n+2}+12\right) \\
& * \frac{1}{8}\left(6 x_{2 n+4}-330 x_{2 n+2}+96\right)
\end{aligned}
$$

6. Expressions representing Cubical Integers:

$$
\begin{aligned}
& \nLeftarrow\left[x_{3 n+4}-7 x_{3 n+3}+3 x_{n+2}-21 x_{n+1}\right] \\
& \& \frac{1}{8}\left[x_{3 n+5}-55 x_{3 n+3}+3 x_{n+3}-165 x_{n+1}\right]
\end{aligned}
$$

7. Expressions representing Bi-Quadratic Integers:

$$
\begin{aligned}
& \neq\left[x_{4 n+5}-7 x_{4 n+4}+4 x_{2 n+3}-28 x_{2 n+2}+6\right] \\
& * \frac{1}{8}\left[x_{4 n+6}-55 x_{4 n+4}+4 x_{2 n+4}-220 x_{2 n+2}+48\right] .
\end{aligned}
$$

8. Expressions representing Quintic Integers:

$$
\begin{aligned}
& \nLeftarrow\left[x_{5 n+6}-7 x_{5 n+5}+5 x_{3 n+4}-35 x_{3 n+3}+10 x_{n+2}-70 x_{n+1}\right] \\
& \nLeftarrow \frac{1}{8}\left[x_{5 n+7}-55 x_{5 n+5}+5 x_{3 n+5}-275 x_{3 n+3}+10 x_{n+3}-550 x_{n+1}\right]
\end{aligned}
$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas:
Choice 1:
Let $Y_{n}=x_{n+2}-7 x_{n+1}, X_{n}=9 x_{n+1}-x_{n+2} \Rightarrow$
$5 Y_{n}{ }^{2}-3 X_{n}{ }^{2}=20$, a hyperbola.
Choice 2:
Let $Y_{n}=x_{n+3}-55 x_{n+1}, X_{n}=213 x_{n+1}-3 x_{n+3} \Rightarrow$
$15 Y_{n}{ }^{2}-X_{n}{ }^{2}=3840$, a hyperbola.
10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of parabolas:
Choice 1:
Let $Y_{n}=x_{2 n+3}-7 x_{2 n+2}, X_{n}=9 x_{n+1}-x_{n+2} \Rightarrow$
$5 Y_{n}-3 X_{n}{ }^{2}=10$, a parabola.

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795

Choice 2:

Let $Y_{n}=x_{2 n+4}-55 x_{2 n+2}, X_{n}=213 x_{n+1}-3 x_{n+3} \Rightarrow$
$120 Y_{n}-X_{n}{ }^{2}=1920$, a parabola.

Illustration 4:

The substitution of the linear transformations
$z=(k+1) \alpha, x=k \alpha$
in (1) leads to the positive pell equation
$y^{2}=(2 k+1) \alpha^{2}+10$
for which the integer solutions exist when k takes particular values.
For example, considering the value of k to be 19 in (19), it gives the positive pell equation
$y^{2}=39 \alpha^{2}+10$
whose smallest positive integer solution is $\alpha_{0}=1, y_{0}=7$
To obtain the other solutions (20) consider the pell equation
$y^{2}=39 \alpha^{2}+1$
whose smallest positive integer solution is $\left(\tilde{\alpha}_{0}, \tilde{y}_{0}\right)=(4,25)$
If $\left(\tilde{\alpha}_{n}, \tilde{y}_{n}\right)$ represents the general solution of (21),then it is given by
$\tilde{\alpha}_{n}=\frac{1}{2 \sqrt{39}} g_{n}, \tilde{y}_{n}=\frac{1}{2} f_{n}$
where
$f_{n}=(25+4 \sqrt{39})^{n+1}+(25-4 \sqrt{39})^{n+1}$
$g_{n}=(25+4 \sqrt{39})^{n+1}-(25-4 \sqrt{39})^{n+1}$
Applying the Brahmagupta lemma between $\left(\alpha_{0}, y_{0}\right)$ and $\left(\tilde{\alpha}_{n}, \tilde{y}_{n}\right)$,we have
$\alpha_{n+1}=\frac{1}{2} f_{n}+\frac{7}{2 \sqrt{39}} g_{n}$,
$y_{n+1}=\frac{7}{2} f_{n}+\frac{\sqrt{39}}{2} g_{n}$
In view of (18),
$z_{n+1}=10 f_{n}+\frac{70 \sqrt{39}}{39} g_{n}$,
$x_{n+1}=\frac{19}{2} f_{n}+\frac{133}{2 \sqrt{39}} g_{n}$
The above values of $x_{n+1}, y_{n+1}, z_{n+1}$ represents the general solutions to (1).
The recurrence relations satisfied by $y_{n+1}, z_{n+1}, x_{n+1}$ are given by

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
$y_{n+1}-50 y_{n+2}+y_{n+3}=0, n=-1,0,1,2, \ldots$
$z_{n+1}-50 z_{n+2}+z_{n+3}=0, n=-1,0,1,2, \ldots$
$x_{n+1}-50 x_{n+2}+x_{n+3}=0, n=-1,0,1,2, \ldots$
Some numerical examples satisfying(1) for $k=19$ are given in Table 4below:

Table 4: Numerical examples

n	y_{n+1}	x_{n+1}	z_{n+1}	α_{n+1}
-1	7	19	20	1
0	331	1007	1060	53
1	16543	50331	52980	2649
2	826819	2515543	2647940	132397
3	41324407	125726819	132344020	6617201
4	2065393531	6283825407	6614553060	330727653
5	103228352143	314065543531	330595308980	16529765449

Observations:

1. All the values x_{n+1}, y_{n+1} are odd, where as the values of z_{n+1} are even.
2. $x_{n+1} \equiv 0(\bmod 19)$
3. $z_{n+1} \equiv 0(\bmod 20)$
4. A few interesting relations among the solutions:

$$
\begin{aligned}
& * 4 y_{n+1}-\alpha_{n+2}+25 \alpha_{n+1}=0 \\
& * \quad 200 y_{n+1}-\alpha_{n+3}+1249 \alpha_{n+1}=0
\end{aligned}
$$

5. Expressions representing Nasty Numbers:

$$
\begin{aligned}
& \neq \frac{1}{20}\left(42 \alpha_{2 n+3}-1986 \alpha_{2 n+2}+240\right) \\
& \star \frac{1}{1000}\left(42 \alpha_{2 n+4}-99258 \alpha_{2 n+2}+12000\right)
\end{aligned}
$$

6. Expressions representing Cubical Integers:

$$
\begin{aligned}
& * \frac{1}{20}\left[7 \alpha_{3 n+4}-331 \alpha_{3 n+3}+21 \alpha_{n+2}-993 \alpha_{n+1}\right] \\
& * \frac{1}{1000}\left[7 \alpha_{3 n+5}-16543 \alpha_{3 n+3}+21 \alpha_{n+3}-49629 \alpha_{n+1}\right]
\end{aligned}
$$

7. Expressions representing Bi-Quadratic Integers:

$$
\begin{aligned}
& \nleftarrow \frac{1}{20}\left[7 \alpha_{4 n+5}-331 \alpha_{4 n+4}+28 \alpha_{2 n+3}-1324 \alpha_{2 n+2}+120\right] \\
& \not \frac{1}{1000}\left[7 \alpha_{4 n+6}-16543 \alpha_{4 n+4}+28 \alpha_{2 n+4}-66172 \alpha_{2 n+2}+6000\right]
\end{aligned}
$$

International Research Journal of Education and Technology
 Peer Reviewed Journal
 ISSN 2581-7795

8. Expressions representing Quintic Integers:

$$
\begin{aligned}
& \neq \frac{1}{20}\left[7 \alpha_{5 n+6}-331 \alpha_{5 n+5}+35 \alpha_{3 n+4}-1655 \alpha_{3 n+3}+70 \alpha_{n+2}-3310 \alpha_{n+1}\right] \\
& * \frac{1}{1000}\left[7 \alpha_{5 n+7}-16543 \alpha_{5 n+5}+35 \alpha_{3 n+5}-82715 \alpha_{3 n+3}+70 \alpha_{n+3}-165430 \alpha_{n+1}\right]
\end{aligned}
$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas:

Choice 1:

Let $Y_{n}=7 \alpha_{n+2}-331 \alpha_{n+1}, X_{n}=53 \alpha_{n+1}-\alpha_{n+2} \Rightarrow$
$Y_{n}{ }^{2}-39 X_{n}{ }^{2}=1600$, a hyperbola.

Choice 2:

Let $Y_{n}=7 \alpha_{n+3}-16543 \alpha_{n+1}, X_{n}=2649 \alpha_{n+1}-\alpha_{n+3} \Rightarrow$ $Y_{n}^{2}-39 X_{n}^{2}=4000000$, a hyperbola.
10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Parabolas:
Choice 1:
Let $Y_{n}=7 \alpha_{2 n+3}-331 \alpha_{2 n+2}, X_{n}=53 \alpha_{n+1}-\alpha_{n+2} \Rightarrow$ $20 Y_{n}-39 X_{n}{ }^{2}=800$, a parabola.

Choice 2:

Let $Y_{n}=7 \alpha_{2 n+4}-16543 \alpha_{2 n+2}, X_{n}=2649 \alpha_{n+1}-\alpha_{n+3} \Rightarrow$
$1000 Y_{n}-39 X_{n}{ }^{2}=2000000$, a parabola.

Illustration 5:

The Substitution of the linear transformations
$x=u+h, y=u-h, u \neq h \neq 0$
in (1) leads to the pell equation
$z^{2}=2 u^{2}+\left(2 h^{2}-10\right)$
which is solvable only for special values h.. For example, considering the value h to be 1 in (26), one obtains the negative pell equation
$z^{2}=2 u^{2}-8$
whose smallest negative integer solution is $u_{0}=2, z_{0}=0$
To obtain the other solutions to (27) consider the pell equation $z^{2}=2 u^{2}+1$

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
whose smallest positive integer solution is $\left(\tilde{u}_{0}, \tilde{z}_{0}\right)=(2,3)$
If $\left(\tilde{u}_{n}, \tilde{z}_{n}\right)$ represents the general solutions of (28), then it is given by
$\tilde{u}_{n}=\frac{1}{2 \sqrt{2}} g_{n}, \tilde{z}_{n}=\frac{1}{2} f_{n}$
where
$f_{n}=(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}$
$g_{n}=(3+2 \sqrt{2})^{n+1}-(3-2 \sqrt{2})^{n+1}$
Applying the Brahmagupta lemma between $\left(u_{0}, z_{0}\right)$ and $\left(\tilde{u}_{n}, \tilde{z}_{n}\right)$, we have
$u_{n+1}=f_{n}$,
$z_{n+1}=\sqrt{2} g_{n}$
In view of (25),
$x_{n+1}=f_{n}+1$,
$y_{n+1}=f_{n}-1$
The above values of $x_{n+1}, y_{n+1}, z_{n+1}$ represents the general solutions to (1).
The recurrence relations satisfied by $z_{n+1}, x_{n+1}, y_{n+1}$ are given by
$z_{n+1}-6 z_{n+2}+z_{n+3}=0, n=-1,0,1,2, \ldots$
$x_{n+1}-6 x_{n+2}+x_{n+3}=-4, n=-1,0,1,2, \ldots$
$y_{n+1}-6 y_{n+2}+y_{n+3}=4, n=-1,0,1,2, \ldots$
Some numerical examples satisfying (1) for $h=1$ are given in Table 5 below:
Table 5: Numerical examples

n	z_{n+1}	x_{n+1}	y_{n+1}	u_{n+1}
-1	0	3	1	2
0	8	7	5	6
1	48	35	33	34
2	280	199	197	198
3	1632	1155	1153	1154
4	9512	6727	6725	6726
5	55440	39203	39201	39202

Observations:

1. All the values z_{n+1} areeven, where as the values of x_{n+1}, y_{n+1} are odd.
2. $z_{n+1} \equiv 0(\bmod 8)$ when $n=0,1,2,3, \ldots$
3. A few interesting relations among the solutions:

* $2 z_{n+1}-u_{n+2}+3 u_{n+1}=0$
* $12 z_{n+1}-u_{n+3}+17 u_{n+1}=0$

International Research Journal of Education and Technology
Peer Reviewed Journal
ISSN 2581-7795
4. Expressions representing Nasty Numbers:

* $\left(6 u_{2 n+2}+12\right)$
* $\left(36 u_{2 n+3}-6 u_{2 n+4}+12\right)$

5. Expressions representing Cubical Integers:
\& $\left[u_{3 n+3}-3 u_{n+1}\right]$

* $\left[6 u_{3 n+4}-u_{3 n+5}+18 u_{n+2}-3 u_{n+3}\right]$

6. Expressions representing Bi-Quadratic Integers:

* $\left[u_{4 n+4}+4 u_{2 n+2}+6\right]$
* $\left[6 u_{4 n+5}-u_{4 n+6}+24 u_{2 n+3}-4 u_{2 n+4}+6\right]$

7. Expressions representing Quintic Integers:

* $\left[u_{5 n+5}+5 u_{3 n+3}+10 u_{n+1}\right]$
* $\left[6 u_{5 n+6}-u_{5 n+7}+30 u_{3 n+4}-5 u_{3 n+5}+60 u_{n+2}-10 u_{n+3}\right]$

8. Employing linear combinations solutions, one obtains integer solutions to different choices of Hyperbolas:

Choice 1:

Let $Y_{n}=u_{n+1}, X_{n}=u_{n+2}-3 u_{n+1} \Rightarrow$
$8 Y_{n}{ }^{2}-X_{n}{ }^{2}=32$, a hyperbola.

Choice 2:

Let $Y_{n}=u_{n+1}, X_{n}=u_{n+3}-17 u_{n+1} \Rightarrow$ $288 Y_{n}{ }^{2}-X_{n}{ }^{2}=1152$, hyperbola.
9. Employing linear combinations solutions, one obtains integer solutionsto different choices of Parabolas:

Choice 1:

Let $Y_{n}=u_{2 n+2}, X_{n}=u_{n+2}-3 u_{n+1} \Rightarrow$
$8 Y_{n}-X_{n}{ }^{2}=16$, a parabola.

Choice 2:

Let $Y_{n}=u_{2 n+2}, X_{n}=u_{n+3}-17 u_{n+1} \Rightarrow$
$288 Y_{n}-X_{n}{ }^{2}=576$, a parabola.

Conclusion:

In this paper, we have presented different patterns of non-homogeneous ternary quadratic diophantine equation. In conclusion, one may search for non-zero distinct integer solutions to other choices of homogeneous or non-homogeneous ternary quadratic diophantine equations along with their corresponding properties.

International Research Journal of Education and Technology Peer Reviewed Journal

ISSN 2581-7795

References:

[1] L.E. Dickson, History of the theory of Numbers, Vol. 2, Chelsea Publishing Company, Newyork, 1952.
[2] L.J. Model, Diophantine Equations, Academic Press, Newyork, 1969.
[3]M.A.Gopalan and V.Pandichelvi, On the ternary quadratic equation $x^{2}+y^{2}=z^{2}+1$, Impact J.Sci.Tech: vol 2(2), 55-58,2008.
[4] M.A. Gopalan and P. Shanmuganandham, Integer solutions of ternary quadratic equations $x^{2}+y^{2}=z^{2}-4$, Impact J.Sci.Tech: vol2(2), 59-63, 2008
[5] M.A.Gopalan and P.Shanmuganandham, Integer Solutions of Ternary Quadratic equation $x^{2}+y^{2}=z^{2}+4$, Impact J.Sci.Tech: $\operatorname{vol} 2(3), 139-141,2008$.
[6] M.A.Gopalan and J.Kaliga Rani, On the ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$ Impact J.Sci.Tech: vol 5, No.1, 39-43,2011.
[7] S.Vidhyalakshmi, M.A.Gopalan, Observations On The Paper Entitled "Integer solution of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-4$ " International Journal of Current Science, Vol 12, Issue 1, 401-406, January 2022.

