

Peer Reviewed Journal ISSN 2581-7795

OBSERVATIONS ON THE INTEGRAL SOLUTIONS OF THE TERNARY QUADRATIC EQUATION

 $x^2 + y^2 = z^2 + 10$

J. SHANTHI¹, M.A. GOPALAN², P. DHANASSREE³

¹Assistant Professor, Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.

²Professor, Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.

³PG Student, Department of Mathematics, SIGC,Affiliated to Bharathidasan University, Trichy,Tamil Nadu, India.

Abstract:

This paper illustrates the process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equation given by $x^2 + y^2 = z^2 + 10$

Keywords: Non-homogeneous quadratic, Ternary quadratic, Integer solutions.

Introduction:

It is known that Diophantine equations with multi-degree and multiple variables are rich invariety [1,2]. While searching for the collection of second-degree equations with three unknowns, the authors came across the papers [3,4,5,6,7] in which the authors obtained integer solutions to the ternary quadratic equation $x^2 + y^2 = z^2 + N$, $N = 1, \pm 4, 8$.

The above papers motivated us for obtaining non-zero distinct integer solutions to the above equation for other values to N. This communication illustrates the process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equation given by $x^2 + y^2 = z^2 + 10$

Method of analysis:

The non-homogeneous ternary quadratic Diophantine equation under consideration is $x^2 + y^2 = z^2 + 10$... (1) The process of obtaining different sets of integer solutions to (1) is illustrated below:

Illustration 1:

The choice $z = x + k, k \ge 0$... (2) in (1) leads to the parabola $y^2 = k^2 + 2kx + 10$... (3)

International Research Journal of Education and Technology RJEdT Peer Reviewed Journal ISSN 2581-7795

It is possible to choose k, x so that the R.H.S. of (3) is a perfect square and the value of y is obtained. Substituting the values of k, x in (2),the corresponding value of z satisfying (1) is obtained. For simplicity and brevity, a few examples are given in

Table 1: Example

k	X	У	Z
1	$2n^2 + 6n - 1$	2 <i>n</i> +3	$2n^2 + 6n$
3	$\frac{1}{6} \left(n^4 - 2n^3 + 11n^2 - 10n + 6 \right)$	$n^2 - n + 5$	$\frac{1}{6} \left(n^4 - 2n^3 + 11n^2 - 10n + 24 \right)$
5	$10n^2 + 10n - 1$	10 <i>n</i> + 5	$10n^2 + 10n + 4$

Illustration 2:

The Substitution of the linear transformation

$$x = y + k, (k \ge 0) \qquad \dots (4)$$

in (1) leads to the pell equation
$$2y^{2} = z^{2} - (k^{2} + 2ky) + 10 \qquad \dots (5)$$

which is solvable only for special values k, For example, considering the value

k to be 2 in (5), one obtains the positive pell equation

 $Y^{2} = 2z^{2} + 16, Y = 2y + 2 \qquad \dots (6)$

whose smallest positive integer solution is $z_0 = 8$, $Y_0 = 12$

To obtain the other solution of (6) consider the pell equation

$$Y^2 = 2z^2 + 1 \qquad ...(7)$$

whose smallest positive integer solution is $(\tilde{z}_0, \tilde{Y}_0) = (2,3)$

If $(\tilde{x}_n, \tilde{Y}_n)$ represents the general solution of (7), then it is given by

$$\widetilde{z}_n = \frac{1}{2\sqrt{2}} g_n, \, \widetilde{Y}_n = \frac{1}{2} f_n$$

where

$$f_n = (3 + 2\sqrt{2})^{n+1} + (3 - 2\sqrt{2})^{n+1}$$
$$g_n = (3 + 2\sqrt{2})^{n+1} - (3 - 2\sqrt{2})^{n+1}$$

Applying the Brahmagupta lemma between (z_0, Y_0) and $(\tilde{z}_n, \tilde{Y}_n)$, we have

$$z_{n+1} = 4f_n + 3\sqrt{2}g_n,$$

$$Y_{n+1} = 6f_n + 4\sqrt{2}g_n$$

Peer Reviewed Journal ISSN 2581-7795

$$y_{n+1} = 3f_n + 2\sqrt{2}g_n - 1 \quad \left(\because y = \frac{Y-2}{2}\right)$$

In view of (4)

$$x_{n+1} = 3f_n + 2\sqrt{2g_n} + 1$$

The above values of x_{n+1} , y_{n+1} , z_{n+1} represents the general solution to (1).

The recurrence relations satisfied by $z_{n+1}, x_{n+1}, y_{n+1}$ are given by

$$z_{n+1} - 6z_{n+2} + z_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$$
 ...(8)

$$x_{n+1} - 6x_{n+2} + x_{n+3} = -4, n = -1, 0, 1, 2, ...$$
 ... (9)

$$y_{n+1} - 6y_{n+2} + y_{n+3} = 4, n = -1, 0, 1, 2, \dots$$

Some numerical examples satisfying (1) for k = 2 are given in Table 2 below:

п	Z_{n+1}	\mathcal{Y}_{n+1}	Z_{n+1}	
-1	8	5	7	
0	48	33	35	
1	280	197	199	
2	1632	1153	1155	
3	9512	6725	6727	
4	55440	39201	39203	
5	323128	228485	228487	

Table 2: Numerical examples

Observations:

- 1. All the values of z_{n+1} are even, where as the values of x_{n+1} , y_{n+1} are odd.
- **2.** $z_{n+1} \equiv 0 \pmod{8}$
- 3. $x_{3n-3}, x_{3n-2} \equiv 0 \pmod{7}$
- 4. A few interesting relations among the solutions:

5. Expressions representing Nasty Numbers:

$$\frac{1}{4} (18z_{2n+3} - 102z_{2n+2} + 48)$$

$$\frac{1}{8} (6z_{2n+4} - 198z_{2n+2} + 96)$$

6. Expressions representing Cubical Integers:

$$\frac{1}{4} \left[3z_{3n+4} - 17z_{3n+3} + 9z_{n+2} - 51z_{n+1} \right]$$

$$\frac{1}{8} \left[z_{3n+5} - 33z_{3n+3} + 3z_{n+3} - 99z_{n+1} \right]$$

... (10)

Peer Reviewed Journal ISSN 2581-7795

7. Expressions representing Bi-Quadratic Integers:

$$\frac{1}{4} \left[3z_{4n+5} - 17z_{4n+4} + 12z_{2n+3} - 68z_{2n+2} + 24 \right]$$

$$\frac{1}{8} \left[z_{4n+6} - 33z_{4n+4} + 4z_{2n+4} - 132z_{2n+2} + 48 \right]$$

8. Expressions representing Quintic Integers:

$$\frac{1}{4} \left[3z_{5n+6} - 17z_{5n+5} + 15z_{3n+4} - 85z_{3n+3} + 30z_{n+2} - 170z_{n+1} \right]$$

$$\frac{1}{8} \left[z_{5n+7} - 33z_{5n+5} + 5z_{3n+5} - 165z_{3n+3} + 10z_{n+3} - 330z_{n+1} \right]$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas:

Choice: 1

Let
$$Y_n = 3z_{n+2} - 17z_{n+1}, X_n = 6z_{n+1} - z_{n+2} \Longrightarrow$$

 $Y_n^2 - 8X_n^2 = 64$, a hyperbola.

Choice: 2

Let $Y_n = z_{n+3} - 33z_{n+1}$, $X_n = 35z_{n+1} - z_{n+3} \Longrightarrow$

 $9Y_n^2 - 8X_n^2 = 2304$, a hyperbola.

10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Parabolas: Choice: 1

Let
$$Y_n = 3z_{2n+3} - 17z_{2n+2}$$
, $X_n = 6z_{n+1} - z_{n+2} \Longrightarrow$

 $Y_n - 2X_n^2 = 8$, a parabola.

Choice: 2

Let
$$Y_n = z_{2n+4} - 33z_{2n+2}, X_n = 35z_{n+1} - z_{n+3} \Longrightarrow$$

 $9Y_n - X_n^2 = 144$, a parabola.

Illustration 3:

The Substitution of the linear transformation z = k x, (k > 1) ... (11) in (1) leads to the positive pell equation $y^2 = (k^2 - 1)x^2 + 10$...(12) which is solvable only for special values k. For example considering the values

which is solvable only for special values k. For example, considering the value k to be 4in (12), one obtains the positive pell equation $y^2 = 15x^2 + 10$... (13)

@2022, IRJEdT Volume: 04 Issue: 07 | July-2022

Peer Reviewed Journal ISSN 2581-7795

whose smallest positive integer solution is $x_0 = 1, y_0 = 5$ To obtain the other solutions to (13) consider the pell equation $y^2 = 15x^2 + 1$... (14)

whose smallest positive integer solution is $(\tilde{x}_0, \tilde{y}_0) = (1, 4)$

If $(\tilde{x}_n, \tilde{y}_n)$ represents the general solution of (14), then it is given by

$$\widetilde{x}_n = \frac{1}{2\sqrt{15}} g_n, \ \widetilde{y}_n = \frac{1}{2} f_n$$

where

$$f_n = (4 + \sqrt{15})^{n+1} + (4 - \sqrt{15})^{n+1}$$
$$g_n = (4 + \sqrt{15})^{n+1} - (4 - \sqrt{15})^{n+1}$$

Applying the Brahmagupta lemma between (x_0, y_0) and $(\tilde{x}_n, \tilde{y}_n)$, we have

$$x_{n+1} = \frac{1}{2} f_n + \frac{\sqrt{15}}{6} g_n,$$

$$y_{n+1} = \frac{5}{2} f_n + \frac{\sqrt{15}}{2} g_n$$

In view of (11),

$$z_{n+1} = \frac{2}{3}(3f_n + \sqrt{15}g_n)$$

The above values of x_{n+1} , y_{n+1} , z_{n+1} represents the general solution to (1).

The recurrence relations satisfied by $x_{n+1}, y_{n+1}, z_{n+1}$ are given by

$$x_{n+1} - 8x_{n+2} + x_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$$
 (15)

$$y_{n+1} - 8y_{n+2} + y_{n+3} = 0, n = -1, 0, 1, 2, ...$$
 ...(16)

$$z_{n+1} - 8z_{n+2} + z_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$$
(17)

Some numerical examples satisfying(1) for k = 4 are given in the Table 3below:

Table 3: Numerical examples

n	x_{n+1}	\mathcal{Y}_{n+1}	Z_{n+1}
-1	1	5	4
0	9	35	36
1	71	275	284
2	559	2165	2236
3	4401	17045	17604
4	34649	134195	138596
5	272791	1056515	1091164

Peer Reviewed Journal ISSN 2581-7795

Observations:

- 1. All the values of x_{n+1} , y_{n+1} are odd, where as the values of z_{n+1} are even.
- **2.** $y_{n+1} \equiv 0 \pmod{5}$
- 3. $x_{n+1} + x_{n+2} \equiv 0 \pmod{10}$
- 4. A few interesting relationsamong the solutions:

$$y_{n+1} - x_{n+2} + 4x_{n+1} = 0$$

$$4 \quad 8y_{n+1} - x_{n+3} + 31x_{n+1} = 0$$

5. Expressions representing Nasty Numbers:

$$(6x_{2n+3} - 42x_{2n+2} + 12)$$

$$\frac{1}{8} (6x_{2n+4} - 330x_{2n+2} + 96)$$

6. Expressions representing Cubical Integers:

$$\begin{bmatrix} x_{3n+4} - 7x_{3n+3} + 3x_{n+2} - 21x_{n+1} \end{bmatrix}$$

$$\frac{1}{8} \begin{bmatrix} x_{3n+5} - 55x_{3n+3} + 3x_{n+3} - 165x_{n+1} \end{bmatrix}$$

7. Expressions representing Bi-Quadratic Integers:

$$\left[x_{4n+5} - 7x_{4n+4} + 4x_{2n+3} - 28x_{2n+2} + 6 \right]$$

$$\left[\frac{1}{8} \left[x_{4n+6} - 55x_{4n+4} + 4x_{2n+4} - 220x_{2n+2} + 48 \right] \right]$$

8. Expressions representing Quintic Integers:

$$\left[x_{5n+6} - 7x_{5n+5} + 5x_{3n+4} - 35x_{3n+3} + 10x_{n+2} - 70x_{n+1} \right]$$

$$\left[\frac{1}{8} \left[x_{5n+7} - 55x_{5n+5} + 5x_{3n+5} - 275x_{3n+3} + 10x_{n+3} - 550x_{n+1} \right] \right]$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas: Choice 1:

Let $Y_n = x_{n+2} - 7x_{n+1}$, $X_n = 9x_{n+1} - x_{n+2} \Longrightarrow$ $5Y_n^2 - 3X_n^2 = 20$, a hyperbola.

Choice 2:

Let
$$Y_n = x_{n+3} - 55x_{n+1}$$
, $X_n = 213x_{n+1} - 3x_{n+3} \Longrightarrow$

 $15Y_n^2 - X_n^2 = 3840$, a hyperbola.

10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of parabolas:

Choice 1:

Let
$$Y_n = x_{2n+3} - 7x_{2n+2}, X_n = 9x_{n+1} - x_{n+2} \Longrightarrow$$

 $5Y_n - 3X_n^2 = 10$, a parabola.

Peer Reviewed Journal ISSN 2581-7795

Choice 2:

Let $Y_n = x_{2n+4} - 55x_{2n+2}$, $X_n = 213x_{n+1} - 3x_{n+3} \Longrightarrow$

 $120Y_n - X_n^2 = 1920$, a parabola.

Illustration 4:

The substitution of the linear transformations $z = (k+1)\alpha$, $x = k\alpha$... (18) in (1) leads to the positive pell equation $y^2 = (2k+1)\alpha^2 + 10$... (19)

for which the integer solutions exist when k takes particular values. For example, considering the value of k to be 19 in (19), it gives the positive pell equation

$$y^2 = 39\alpha^2 + 10$$
 ... (20)

whose smallest positive integer solution is $\alpha_0 = 1$, $y_0 = 7$

To obtain the other solutions (20) consider the pell equation

$$y^2 = 39\alpha^2 + 1$$
 ... (21)

whose smallest positive integer solution is $(\tilde{\alpha}_0, \tilde{y}_0) = (4, 25)$

If $(\tilde{\alpha}_n, \tilde{y}_n)$ represents the general solution of (21), then it is given by

$$\widetilde{\alpha}_n = \frac{1}{2\sqrt{39}} g_n, \, \widetilde{y}_n = \frac{1}{2} f_n$$

where

$$f_n = \left(25 + 4\sqrt{39}\right)^{n+1} + \left(25 - 4\sqrt{39}\right)^{n+1}$$
$$g_n = \left(25 + 4\sqrt{39}\right)^{n+1} - \left(25 - 4\sqrt{39}\right)^{n+1}$$

Applying the Brahmagupta lemma between (α_0, y_0) and $(\tilde{\alpha}_n, \tilde{y}_n)$, we have

$$\alpha_{n+1} = \frac{1}{2} f_n + \frac{7}{2\sqrt{39}} g_n,$$
$$y_{n+1} = \frac{7}{2} f_n + \frac{\sqrt{39}}{2} g_n$$

In view of (18),

$$z_{n+1} = 10f_n + \frac{70\sqrt{39}}{39}g_n,$$
$$x_{n+1} = \frac{19}{2}f_n + \frac{133}{2\sqrt{39}}g_n$$

The above values of x_{n+1} , y_{n+1} , z_{n+1} represents the general solutions to (1). The recurrence relations satisfied by y_{n+1} , z_{n+1} , x_{n+1} are given by

Peer Reviewed Journal ISSN 2581-7795

$y_{n+1} - 50y_{n+2} + y_{n+3} = 0, n = -1, 0, 1, 2, \dots$	(22)
$z_{n+1} - 50z_{n+2} + z_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$	(23)
$x_{n+1} - 50x_{n+2} + x_{n+2} = 0, n = -1, 0, 1, 2, \dots$	(24)

$$x_{n+1} - 50x_{n+2} + x_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$$

Some numerical examples satisfying(1) for k = 19 are given in Table 4below:

Table 4: Numerical examples

п	\mathcal{Y}_{n+1}	X_{n+1}	Z_{n+1}	$\alpha_{_{n+1}}$
-1	7	19	20	1
0	331	1007	1060	53
1	16543	50331	52980	2649
2	826819	2515543	2647940	132397
3	41324407	125726819	132344020	6617201
4	2065393531	6283825407	6614553060	330727653
5	103228352143	314065543531	330595308980	16529765449

Observations:

- 1. All the values x_{n+1} , y_{n+1} are odd, where as the values of z_{n+1} are even.
- 2. $x_{n+1} \equiv 0 \pmod{19}$
- 3. $z_{n+1} \equiv 0 \pmod{20}$
- 4. A few interesting relations among the solutions:

•
$$4y_{n+1} - \alpha_{n+2} + 25\alpha_{n+1} = 0$$

•
$$200y_{n+1} - \alpha_{n+3} + 1249\alpha_{n+1} = 0$$

5. Expressions representing Nasty Numbers:

$$\frac{1}{20} (42\alpha_{2n+3} - 1986\alpha_{2n+2} + 240)$$

$$\frac{1}{1000} (42\alpha_{2n+4} - 99258\alpha_{2n+2} + 12000)$$

6. Expressions representing Cubical Integers:

7. Expressions representing Bi-Quadratic Integers:

$$\frac{1}{20} \Big[7\alpha_{4n+5} - 331\alpha_{4n+4} + 28\alpha_{2n+3} - 1324\alpha_{2n+2} + 120 \Big]$$

$$\frac{1}{1000} \Big[7\alpha_{4n+6} - 16543\alpha_{4n+4} + 28\alpha_{2n+4} - 66172\alpha_{2n+2} + 6000 \Big]$$

Peer Reviewed Journal ISSN 2581-7795

8. Expressions representing Quintic Integers:

$$\stackrel{\bullet}{\star} \frac{1}{20} \left[7\alpha_{5n+6} - 331\alpha_{5n+5} + 35\alpha_{3n+4} - 1655\alpha_{3n+3} + 70\alpha_{n+2} - 3310\alpha_{n+1} \right] \\ \stackrel{\bullet}{\star} \frac{1}{1000} \left[7\alpha_{5n+7} - 16543\alpha_{5n+5} + 35\alpha_{3n+5} - 82715\alpha_{3n+3} + 70\alpha_{n+3} - 165430\alpha_{n+1} \right]$$

9. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Hyperbolas: Choice 1:

Let
$$Y_n = 7\alpha_{n+2} - 331\alpha_{n+1}, X_n = 53\alpha_{n+1} - \alpha_{n+2} \Longrightarrow$$

 $Y_n^2 - 39X_n^2 = 1600$, a hyperbola.

Choice 2:

Let $Y_n = 7\alpha_{n+3} - 16543\alpha_{n+1}$, $X_n = 2649\alpha_{n+1} - \alpha_{n+3} \Longrightarrow$

 $Y_n^2 - 39X_n^2 = 4000000$, a hyperbola.

10. Employing linear combinations among the solutions, one obtains integer solutions to different choices of Parabolas:

Choice 1:

Let $Y_n = 7\alpha_{2n+3} - 331\alpha_{2n+2}$, $X_n = 53\alpha_{n+1} - \alpha_{n+2} \Longrightarrow$

 $20Y_n - 39X_n^2 = 800$, a parabola.

Choice 2: Let $Y_n = 7\alpha_{2n+4} - 16543\alpha_{2n+2}, X_n = 2649\alpha_{n+1} - \alpha_{n+3} \Rightarrow 1000Y_n - 39X_n^2 = 2000000$, a parabola.

Illustration 5:

The Substitution of the linear transformations $x=u+h, y=u-h, u \neq h \neq 0$... (25) in (1) leads to the pell equation $z^2 = 2u^2 + (2h^2 - 10)$... (26)

which is solvable only for special values h. For example, considering the value h to be 1 in (26), one obtains the negative pell equation

$$z^2 = 2u^2 - 8 \qquad \dots (27)$$

whose smallest negative integer solution is $u_0 = 2$, $z_0 = 0$

To obtain the other solutions to (27) consider the pell equation $z^2 = 2u^2 + 1$ (28)

Peer Reviewed Journal ISSN 2581-7795

whose smallest positive integer solution is $(\tilde{u}_0, \tilde{z}_0) = (2,3)$

If $(\tilde{u}_n, \tilde{z}_n)$ represents the general solutions of (28), then it is given by

$$\widetilde{u}_n = \frac{1}{2\sqrt{2}} g_n, \ \widetilde{z}_n = \frac{1}{2} f_n$$

where

$$f_n = (3 + 2\sqrt{2})^{n+1} + (3 - 2\sqrt{2})^{n+1}$$
$$g_n = (3 + 2\sqrt{2})^{n+1} - (3 - 2\sqrt{2})^{n+1}$$

Applying the Brahmagupta lemma between (u_0, z_0) and $(\tilde{u}_n, \tilde{z}_n)$, we have

$$\begin{split} u_{n+1} &= f_n, \\ z_{n+1} &= \sqrt{2}g_n \\ \text{In view of (25),} \\ x_{n+1} &= f_n + 1, \\ y_{n+1} &= f_n - 1 \\ \text{The above values of } x_{n+1}, y_{n+1}, z_{n+1} \text{ represents the general solutions to (1).} \\ \text{The recurrence relations satisfied by } z_{n+1}, x_{n+1}, y_{n+1} \text{ are given by} \end{split}$$

$$z_{n+1} - 6z_{n+2} + z_{n+3} = 0, \ n = -1, 0, 1, 2, \dots$$

$$x_{n+1} - 6x_{n+2} + x_{n+3} = -4, \ n = -1, 0, 1, 2, \dots$$

$$y_{n+1} - 6y_{n+2} + y_{n+3} = 4, \ n = -1, 0, 1, 2, \dots$$
Some numerical examples satisfying (1) for $h = 1$ are given in Table 5 below:
$$\dots (31)$$

Some numerical examples satisfying (1) for h = 1 are given in Table 5 below:

Table 5: Numerical examples

п	Z_{n+1}	X_{n+1}	\mathcal{Y}_{n+1}	\mathcal{U}_{n+1}
-1	0	3	1	2
0	8	7	5	6
1	48	35	33	34
2	280	199	197	198
3	1632	1155	1153	1154
4	9512	6727	6725	6726
5	55440	39203	39201	39202

Observations:

- **1.** All the values z_{n+1} are even, where as the values of x_{n+1} , y_{n+1} are odd.
- 2. $z_{n+1} \equiv 0 \pmod{8}$ when n = 0, 1, 2, 3, ...
- 3. A few interesting relations among the solutions:
 - ♦ 2z_{n+1} u_{n+2} + 3u_{n+1} = 0
 ♦ 12z_{n+1} u_{n+3} + 17u_{n+1} = 0

Peer Reviewed Journal ISSN 2581-7795

- 4. Expressions representing Nasty Numbers:
 - ♦ $(6u_{2n+2} + 12)$
 - $(36u_{2n+3} 6u_{2n+4} + 12)$
- 5. Expressions representing Cubical Integers:
 - ♦ $[u_{3n+3} 3u_{n+1}]$
 - ♦ $\begin{bmatrix} 6u_{3n+4} u_{3n+5} + 18u_{n+2} 3u_{n+3} \end{bmatrix}$
- 6. Expressions representing Bi-Quadratic Integers:
 - $\bigstar \quad \left[u_{4n+4} + 4u_{2n+2} + 6 \right]$
 - ♦ $\left[6u_{4n+5} u_{4n+6} + 24u_{2n+3} 4u_{2n+4} + 6\right]$
- 7. Expressions representing Quintic Integers:
 - $\bullet \quad \left[u_{5n+5} + 5u_{3n+3} + 10u_{n+1} \right]$
 - $\bullet \quad \left[6u_{5n+6} u_{5n+7} + 30u_{3n+4} 5u_{3n+5} + 60u_{n+2} 10u_{n+3}\right]$
- 8. Employing linear combinations solutions, one obtains integer solutions to different choices of Hyperbolas:

Choice 1:

Let $Y_n = u_{n+1}, X_n = u_{n+2} - 3u_{n+1} \Longrightarrow$

 $8Y_n^2 - X_n^2 = 32$, a hyperbola.

Choice 2: Let $Y_n = u_{n+1}, X_n = u_{n+3} - 17u_{n+1} \Rightarrow$

 $288Y_n^2 - X_n^2 = 1152$, hyperbola.

9. Employing linear combinations solutions, one obtains integer solutionsto different choices of Parabolas:

Choice 1:

Let $Y_n = u_{2n+2}$, $X_n = u_{n+2} - 3u_{n+1} \Longrightarrow$

 $8Y_n - X_n^2 = 16$, a parabola.

Choice 2:

Let $Y_n = u_{2n+2}, X_n = u_{n+3} - 17u_{n+1} \Longrightarrow$

 $288Y_n - X_n^2 = 576$, a parabola.

Conclusion:

In this paper, we have presented different patterns of non-homogeneous ternary quadratic diophantine equation. In conclusion, one may search for non-zero distinct integer solutions to other choices of homogeneous or non-homogeneous ternary quadratic diophantine equations along with their corresponding properties.

Peer Reviewed Journal ISSN 2581-7795

References:

[1] L.E. Dickson, History of the theory of Numbers, Vol. 2, Chelsea Publishing Company, Newyork, 1952.

[2] L.J. Model, Diophantine Equations, Academic Press, Newyork, 1969.

[3]M.A.Gopalan and V.Pandichelvi, On the ternary quadratic equation $x^2 + y^2 = z^2 + 1$, Impact J.Sci.Tech: vol 2(2), 55-58,2008.

[4] M.A. Gopalan and P. Shanmuganandham, Integer solutions of ternary quadratic equations $x^2 + y^2 = z^2 - 4$, Impact J.Sci.Tech: vol2(2), 59-63, 2008

[5] M.A.Gopalan and P.Shanmuganandham, Integer Solutions of Ternary Quadratic equation $x^2 + y^2 = z^2 + 4$, Impact J.Sci.Tech: vol2(3), 139-141, 2008.

[6] M.A.Gopalan and J.Kaliga Rani, On the ternary quadratic equation $x^2 + y^2 = z^2 + 8$ Impact J.Sci.Tech: vol 5, No.1, 39-43,2011.

[7] S.Vidhyalakshmi, M.A.Gopalan, Observations On The Paper Entitled "Integer solution of Ternary Quadratic Equation $x^2 + y^2 = z^2 - 4$ " International Journal of Current Science, Vol 12, Issue 1, 401-406, January 2022.